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ABSTRACT

15 common fungicides were evaluated to study their inhibitory effects on the human aromatase 
enzyme in comparison with the Letrozole (LTZ), the most potent inhibitor of aromatase (AI) used 
as anti-estrogen for breast cancer treatment using AUTODOCK software for calculation of inhibition 
energy on CYP19A1 aromatase enzyme. Those compounds with minimal binding energy are safer in 
terms of toxicity and resistance of other prescription drugs like non-steroid AIs. In the authors’ study, 
they found that four triazole fungicides compounds, Triticonazole, Tebuconazole, Metconazole and 
Fluquinconazole, exhibited minimal inhibition constant (IC).
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INTRODUCTION

Biosynthesis of estrogens from androgens is catalyzed by cytochrome P450 aromatase. Aromatase 
inhibition by the triazole compounds Letrozole (LTZ) and Anastrozole is a prevalent therapy for 
estrogen-dependent postmenopausal breast cancer.

Triazole fungicides are widely used as agricultural fungicides and antimycotic drugs that target 
14α-demethylase. Some were previously shown to inhibit aromatase, thereby raising the possibility 
of endocrine disruptive effects. However, mechanistic analysis of their inhibition has never been 
undertaken.

We have evaluated the inhibitory effects of 15 common fungicides in human aromatase enzyme 
in comparison with the Letrozole (LTZ), the most potent inhibitor of aromatase used as anti-estrogen 
for breast cancer treatment using AUTODOCK software for calculation of inhibition energy on CYP19 
aromatase enzyme (Egbuta, Lo, & Ghosh, 2014).

Triazole containing compounds as systemic fungicides are widely used in agriculture due to its 
high efficiency, broad spectrum, low toxicity and long effectiveness (Feng, Guo, Song, Hu, & Li, 
2011). Currently 16 triazole fungicides: bitertanol, cyproconazole, difenoconazole, epoxiconazole, 
fluquinconazole, flusilazole, flutriafol, hexaconazole, metconazole, myclobutanil, penconazole, 
propiconazole, tebuconazole, triadimefon, triadimenol and triticonazole, are approved by Swiss 
Federal Office of Public Health (Zürich, Switzerland). Switzerland no longer allows the use of many 
chemicals that are still sprayed on American fields (Rosensteil, 2015). By 2005 was set the goal to 
halve the pesticide pollution of water bodies (Singer, 2002). Although, by 2014 report was released 

44



International Journal of Knowledge Discovery in Bioinformatics
Volume 6 • Issue 2 • July-December 2016

45

that in the five rivers in Switzerland’s found heavily polluted in spring and summer by a cocktail of 
different pesticides (swissinfo.ch, 2014).

Target enzymes of triazoles in steroidogenesis are the sterol 14-alfa-demethylase (encoded by 
the CYP51 gene) and the aromatase (encoded by the CYP19 gene).

The human aromatase enzyme is a member of the cytochrome P450 family and is the product 
of the CYP19A1 gene, located on chromosome 15 (Thompson & Siiteri, 1974; Chen et al., 1988). 
Aromatase is the only known vertebrate enzyme that can aromatize a six-membered ring; aromatase 
is, therefore, the sole source of estrogen in the body (Amarneh, Corbin, Peterson, Simpson, & 
Graham-Lorence, 1993).

Nevertheless, since aromatase was first characterized, research has been impeded by the lack of 
its three-dimensional structure. In 2009, Ghosh et al. successfully solved the crystallized structure 
of human aromatase enzyme and provides a structural basis for the specificity to androgen (Ghosh, 
Griswold, Erman, & Pangborn, 2009; Ghosh, Griswald, Erman, & Pangborn, 2010).

The catalytic site of aromatase is located at the juncture of the I and F helices, β-sheet 3, and as 
the B-C loop. Androstenedione binds into the steroid binding pocket such that its β-face orientates 
towards the heme group of aromatase, placing C19 within 4.0 Å of the Fe atom. This binding site is 
only possible if the I-helix backbone is moved 3.5 Å, creating a binding pocket that is approximately 
400 Å3. This important distortion is created by residue P308, without which N309, steric hindrance 
would prevent catalytic activity.

This crystal structure of aromatase will not only allow better structure-based drug design than 
previous models, but it has also allowed a direct analysis of why some currently available aromatase 
inhibitors function better than others (Chumsri, Howes, Bao et al., 2011).

As triazole moieties are widely used in fungicides, some studies reported that agricultural 
triazole pesticides are culprits for the development of resistance to other triazole containing drugs 
(Snelders et al., 2012) e.g. triazole aromatase inhibitor antiestrogens. Among them are Anastrozole 
and Letrozole, the third-generation nonsteroidal aromatase inhibitors (AIs), which are now used as 
first-line therapy in the treatment of breast cancer in postmenopausal women (Scheme 2) (Brodie, 
2002; Geisler, 2011; Brueggemeier, Hackett, & Diaz-Cruz, 2005). In recent years, some triazole 
residues have been found in agricultural products, including fruits, wheat, tea leaves and wine and 
water (Kumar, Ravindranath, & Shanker, 2004; Trosken, Bittner, & Volkel, 2005; Zhou, Xiao, & 
Ding, 2007; Jeannot, Sabik, Sauvard, & Genin, 2000; Paraiba, 2007). In one study was concluded that 
many azole compounds developed as inhibitors of fungal sterol 14-alfa-demethylase are inhibitors 
also of mammalian sterol 14-alfa-demethylase and mammalian aromatase with unknown potencies 
(Zarn, Bruschweiler, & Schlater, 2003).

To avoid the risk of possible development of resistance to other triazole drugs and to reduce 
toxicity of aromatase inhibitors in the treatment of breast cancer, there are used different methods in 
order to find out new preventive strategies.

In our study, we perform virtual screening of 15 fungicides and AI reference drug Letrozole to 
measure inhibitory effect on human aromatase. In this way, we aim to range which pesticides are 
most potent inhibitors of Cyp19 enzyme to predict and prevent possible summative cumulating effect 
of fungicide undesirably overlapping with the activity of anticancer drugs.

The publication of a high-resolution X-ray structure of human aromatase has opened the way to a 
greater understanding of the structural basis for estrogen synthesis and substrate/inhibitor recognition 
(Schuster et al., 2006). Triazole aromatase inhibitors (AIs) bind to the active site of CYP19 by 
coordinating the heme iron atom of the enzyme through a heterocyclic nitrogen lone pair.

In our docking study, we used together the X-ray structure of human cytochrome P450 aromatase 
Cyp19A1 (PDB code 3S79, resolution 2.75 Å) (Ghosh et al., 2012) associated with the metabolism of 
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estrogens and carcinogens with breast cancer, with a collection of commercially available compounds, 
particularly, 15 triazole fungicides and anticancer drug Letrozole as reference standard (Table 1).

Molecular docking is established method for analysis of molecular associations, which is mostly 
used in the drug discovery field to study the binding of small molecules (ligands) to macromolecules 
(receptor) (Barril & Morley, 2005).

Cytochrome P450 aromatase homology models were published and used to perform docking 
and molecular dynamics simulations on known AIs (Favia, Cavalli, Masetti et al., 2006; Karkola, 
Holtje, & Wahala, 2007).

MATERIALS AND METHODS

The availability of X-ray structure of human aromatase enables us to set up docking protocol by 
AutoDock software to identify iron - ligand interactions between heme protein and 16 different 
triazole ligands, as chemical scaffolds able to inhibit aromatase, thus testing interactions within the 
aromatase binding site.

Computational ligand docking methodology, AutoDock 4.0, based on Lamarckian genetic 
algorithm (Solis & Wets, 1981) was employed for virtual screening of a compound library with 16 
entries including reference compound as Letrozole, the 3rd generation aromatase inhibitors for the 
treatment of breast cancer, with the enzyme Cytochrome P450 aromatase(Cyp19A1), a potential 
drug target.

Autodock 4.0 uses GA as a global optimizer combined with energy minimization as a local 
search method (Morris et al., 1998).

The macromolecule, Cytochrome P450 aromatase or Cyp19A1 (PDB code 3S79, resolution 
2.75 Å) was retrieved by using AutoDock 4 (The Scripps Research Institute, Molecular Graphics 
Laboratory, 10550 North Torrey Pines Road, CA, 92037) running on operative system Windows 7 
(Miscosoft corporation 2007)

PRODRG was used to draw the 2D structures of different ligands. All the structures were 
written in protein database (PDB) format. Input molecules files for an AutoDock experiments must 
confirm to the set of atom types supported by it. Therefore, PDBQT format was used to write ligands, 
recognized by AutoDock.

Torsional degree of freedom (TORSDOF) is used in calculating the change in the free energy 
caused by the loss of torsional degree of freedom upon binding. In the AutoDock 4.0 force field, the 
TORSDOF value for a ligand is the total number of rotatable bonds in the ligand.

The 3D crystal structure of Cytochrome P450-aromatase Cyp19A1 (Figure 2) PDB code 
3S79, resolution 2.75 Å was downloaded from Brookhaven Research Collaboratory for Structural 
Bioinformatics (RCSB) Protein Data Bank (PDB; http://www.rcsb.org/pdb).

The nonbonded oxygen atoms of waters, present in the crystal structure were removed. After 
assigning the bond orders, missing hydrogen atoms were added, then the partial atomic charges was 
calculated using Gasteiger–Marsili method (Gasteiger). United atom charges were assigned, non-polar 
hydrogens were merged, and rotatable bonds were assigned, considering all the amide bonds as non-
rotatable. The receptor file was converted to PDBQT format, which is PDB plus ‘’q’’ charges and 
‘’t’’ AutoDock type. (To confirm the AutoDock types, polar hydrogens should be present, whereas 
non-polar hydrogens and lone pair should be merged, each atom should be assigned Gasteiger partial 
charges). Amino acids which form target pocket or inhibition cite of aromatase

MOLECULAR DOCKING STUDY

In the present work, we have studied the in silico binding affinities to the active pocket (Figure 3) 
of enzyme 3S79 (Figure 2) to the selected 15 triazole fungicides (Figure 1) and the standard anti-
aromatase drug Letrozole.
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Of the three different search algorithms offered by AutoDock 4.0, the Lamarckian Genetic 
algorithm (LGA) based on the optimization algorithm was used in favor to other two - simulated 
annealing and genetic algorithm.

For all dockings, 10 independent runs with step sizes of 0.2Å for translations and 5Å for 
orientations and torsions were used. AutoDock tools along with AutoDock 4.0 and AutoGrid 4.0 was 
used to generate both grid and docking parameter files (i.e., gpf and.dpf files) respectively.

A grid box size of 42 x 42 x 42 Å points with a grid spacing of 0.375 Å was generated using 
AutoGrid (Morris et al., 1998). The grid was centered at x,y,z coordinates of 85.51, 52.282, 48.114, 
which was reported as the binding site residues.

For each docking experiment, the lowest energy docked conformation was selected from 10 
runs. The successful completion of docking experiment took from 1 to 4 hours, on a 2.0 GHz Intel 
(R) core 2 duo machine with 3.0 GB of RAM and Windows 7 operating system.

Prior to actual docking run, AutoGrid 4.0 was introduced to precalculate grid maps of interaction 
energies of various atom types.

The energy of interaction of this single atom with the protein is assigned to the grid point. An 
affinity grid is calculated for each type of atoms in the substrate, typically carbon, oxygen, nitrogen, 
and hydrogens as well as grid of electrostatic potential using a point charge of 1 as the probe. Autodock 
4.0 uses these interaction maps to generate ensemble of low energy conformations. It uses a scoring 
function based on AMBER force field, and estimates the free energy of binding of a ligand to its 
target. For each ligand atom types, the interaction energy between the ligand atom and the receptor 
is calculated for the entire binding site which is discretized through a grid. This has the advantage 
that interaction energies do not have to be calculated at each step of the docking process but only 
looked up in the respective grid maps.

Since a grid map represents the interaction energy as a function of the coordinates, their visual 
inspection may reveal the potential unsaturated hydrogen acceptors or donors or unfavorable overlaps 
between the ligand and the receptor.

RESULTS

The binding affinity was evaluated by the binding energies, docking energy, inhibition constant, 
intermolecular energy, and RMSD values. It was demonstrated that the docking protocol could reliably 
reproduce the interaction of aromatase with its substrate with an RMSD of 0 Å.

The results of LGA docking experiments of the triazoles using AutoDock 4.0 and AutoGrid 4.0 
are summarized in Table 1.

Binding energy for reference compound Letrozole (Figure 7) in our docking study is comply 
with other studies and is in agreement with them (Suvannang, Nantasenamat, Isarankura-Na-Ayudhya 
et al., 2011).

Triazole compounds (Figures 4, 5, 6) 1, 3, 10 are chosen as possessing aromatase inhibitory 
potency based on obtained algorithmic parameters docking: highest binding energy, highest inhibition 
constant, and hydrogen bonds.

Compound 1 (Bitertanol) exhibits RMS equivalent to zero in 7th orientation to heme molecule of 
protein, and at this position binding energy is - 6,19; IC – 2,9X10-5; and two hydrogen bonds 
with amino acids of target pocket ASP371 and LEU372.

Compound 3 (Difenoconazole) demonstrated best compliance of inhibitory bound in 7th orientation 
to RMS=0 posing heme molecule, binding energy -7,36, IC – 4,03X10-6, and one hydrogen 
bond with target pocket amino acid THR310.

Compound 10 (Penconazole) exhibits its highest binding energy -7.71 at orientation 6th to heme 
molecule parallel alignment at RMS zero point, IC – 2.22X10-6 and one H-BOND with THR310.
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Figure 1. Scheme 1. Downloaded from free public domain http://www.alanwood.net/pesticides
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Figure 2. Human placental aromatase cytochrome P450 aromatase (CYP19A1) refined at 2.75 angstrom 3S79 (ribbon model). 
Source: http://www.rcsb.org/pdb/explore/jmol.do?structureId=3S79]
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Figure 4. Compound 1 docked within the binding pocket of the enzyme 3S79.Predicted binding mode of compound 1 ().On the 
left, stick and ball model, and on the right, ribbon model of enzyme 3S79 in the binding pocket of which compound 1 is forming 
hydrogen bond with the amino acids ASP371 and LEU372

Figure 3. Target pocket surrounding Heme-molecule of aromatase CYP19A1
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Figure 7. Reference compound, Letrozole docked in the binding pocket of the enzyme 3S79. (Ball and stick model and ribbon model)

Figure 5. Predicted binding mode of compound 3.On the left, stick and ball model, and on the right, ribbon model of enzyme 3S79 
in the binding pocket of which compound 3 is forming hydrogen bond with the amino acid THR310

Figure 6. Predicted binding mode of compound 10.On the left, stick and ball model, and on the right, ribbon model of enzyme 
3S79 in the binding pocket of which compound 3 is forming hydrogen bond with the amino acid THR310
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In our study we found that four triazole fungicides compounds 15, 12, 8, 5 exhibited minimal 
inhibition constant (IC). Those are Triticonazole, Tebuconazole, Metconazole and Fluquinconazole. 
(Figures 8, 9, 10, 11).

Compound 15 exhibits its binding energy -21.65 at orientation 2nd to heme molecule parallel alignment 
at RMS zero point, IC – 1.35X10-016 and no H-BOND.

Figure 8. Molecular surface view of compound 15 docked within the binding pocket of the enzyme 3S79 without H-bonds.Predicted 
binding mode of compound 15 (Triticonazole)

Figure 9. Molecular surface view of compound 12 docked within the binding pocket of the enzyme 3S79 without H-bonds. Predicted 
binding mode of compound 12 (Tebuconazole)
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Compound 12 exhibits its binding energy -21.09 at orientation 7th to heme molecule parallel alignment 
at RMS zero point, IC – 3.5X 10-016 and no H-BOND.

Compound 8 exhibits its binding energy -19.69 at orientation 5th to heme molecule parallel alignment 
at RMS zero point, IC – 3.68X10-015 and no H-BOND.

Compund 5 exhibits its binding energy -17.25 at orientation 9th to heme molecule parallel alignment 
at RMS zero point, IC 2.29 X10-013 and no H-BOND.

CONCLUSION

Those compounds with minimal binding energy are safer in terms of toxicity and resistance of other 
prescription drugs like non-steroid AIs. Those with higher binding energies may cause drug resistance 
or toxicity in cases of other triazole containing drugs like Letrozole.

Figure 10. Molecular surface view of compound 8 docked within the binding pocket of the enzyme 3S79 without H-bonds. Predicted 
binding mode of compound 8 (Metconazole)

Figure 11. Molecular surface view of compound 5 docked within the binding pocket of the enzyme 3S79 without H-bonds. Predicted 
binding mode of compound 5 (Fluquinconazole)
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